Hamiltonian identities for elliptic partial differential equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Parametrically Excited Hamiltonian Partial Differential Equations
Consider a linear autonomous Hamiltonian system with a time-periodic bound state solution. In this paper we study the structural instability of this bound state relative to time almost periodic perturbations which are small, localized, and Hamiltonian. This class of perturbations includes those whose time dependence is periodic but encompasses a large class of those with finite (quasi-periodic)...
متن کاملEssential Spectra of Elliptic Partial Differential Equations
Let A be a closed, densely defined operator in a Banach space X. There are several definitions of the "essential" spectrum of A (cf. [ l ] , [2]). According to Wolf [3], [4] it is the complement in the complex plane of the $-set of A. The $-set $A of A is the set of points X for which (a) a(A — X), the dimension of the null space of A — X, is finite (b) R(A —X), the range of A —X, is closed (c)...
متن کاملSibson and non-Sibsonian interpolants for elliptic partial differential equations
The Natural Element Method (NEM) is a meshless Galerkin method which has shown promise in the area of computational mechanics. In earlier applications of NEM [1–3], natural neighbor (Sibson) coordinates [4] were used to construct the trial and test functions. Recently, Belikov and co-workers [5] proposed a new interpolation scheme (non-Sibsonian interpolation) based on natural neighbors. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2008
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2007.10.015